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Abstract— Three basic equations for topological constraints upon inhomogeneous surface networks
of solids are derived from the Euler equation and other identities which lead to some insight into
the essential issues of this area. In particular, a symmetry between vertices and polygons of a general
surface network is shown to exist, and variations in a surface network can simply be described as a
kind of reciprocal exchange between vertices and polygons. The number of three-ordered or three-
fold vertices, as well as many-edged polygons and many-ordered vertices, is controlled by the ratio
of the number of three-edged and/or four-edged polygons to the total number of polygons. When
the minimum-edged polygon has five edges, the number of three-ordered vertices is automatically
greater than two-thirds of the total number of vertices. The dominant occupation of three-ordered
vertices can still retain under certain conditions after appearance of three-edged and/or four-edged
polygons. The critical distribution of polygons for the maintenance of this kind of domination is
determined. The gap between the critical distribution and natural or artificial surface networks
allows the geometric structure of a network to be changed greatly without loss of the domination.
This finding establishes a quantitative basis for the description of granular and biological materials
in terms of microstructures. It will also be seen that classical models correspond to a very special
case of constraints. Theoretical results are in agreement with experimental data for networks that
arise in surfaces, such as fracture, biological cells, metallurgical grains, bubbles, leaf-vein networks
and the coat pattern of a giraffe.

1. INTRODUCTION

Surface networks are very prevalent geometric structures in nature, ranging in scale from
the microscopic to the macroscopic. In general, they fall into two categories : skeletal and
non-skeletal surface networks. The commonest skeletal network is the trajectory of a
moving object, such as a spider’s web, whereas a non-skeletal network usually consists of
boundaries of condensed matter, such as leaf-vein networks of trees, as shown in Fig. 1.
The attention of the present work focuses on non-skeletal networks. For brevity, therefore,
a surface network is here assumed to be non-skeletal unless a skeletal network is specified.
Nevertheless, the results obtained are valid for both kinds of networks.

A surface network may exhibit a random form that stems from its own specific
situation. Such forms may greatly deviate from each other in their function and role, as
exemplified by the difference between the coat pattern of a giraffe and the crack network
of soil, as shown in Figs 2 and 3. Mathematically speaking, however, any surface network
can be simply described as arrangements of the basic geometric elements, points and edges,
in the form of polygons. To gain insights into the underlying mechanisms of evolution and
formation of a surface network, therefore, it makes sense to apply the mathematical
principles of geometry to determine potential restrictions that might be imposed on the
structures. Usually, these restrictions are referred to as space-filling requirements. One may
note that conventional methods are no longer sufficient to overcome the difficulties that are
rooted in the structure analysis of a general network. This difficulty arises because edges of
polygons forming the network do not have to be straight or smooth lines with definite
orientations but can be either plane or spatial irregular curves scatted randomly. In such
circumstances, the principles of topology are indispensable.

Experimental observations and theoretical discussions on a wide variety of networks
conducted by Thompson in 1917 were possibly one of the earliest works using topological
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concepts in the field of structural analysis (see Thompson, 1963). During the past 80
years, many researchers made efforts to apply topological concepts, particularly the Euler
equation, to quantify geometric requirements on the evolution and formation of a surface
network. A brief review on such research activities prior to 1952 was given by Smith (1952).
Motivated by identification of geometric constraints on metallurgical grain arrays, the
research carried out by Smith (1952) systematically elaborated on the illustration of basic
topological concepts, the description of constraint rules and the formulation of a quan-
titative procedure. Late developments, which were directed mainly towards applications of
previously-established theories, were reviewed by Dormor (1980) for biological cellular
networks, Weaire and Rivier (1984) for universal networks and Atkinson (1988) for met-
allurgical grain networks, respectively. Recent progress was also summarized by Anderson
and Rollett (1990) in connection with the computer simulation of metallurgical grain
growth. The topological requirements upon the formation of a surface network seem to be
also significant in some other emerging areas of research, such as in the modeling of failure
of thin films (Meakin, 1988, 1991) and in the simulation of coat patterns of animals (Murry,
1989 ; Sleeper, 1993).

Some topological constraints on the fragmentation of solid materials were investigated
both theoretically and experimentally by Yong et al. (1994). Additionally, the analysis of
topological constraints on the stress trajectory has unveiled certain difficulties in the local
equilibrium theory of solid mechanics (Yong, 1994a). An example is also given in the latter
part of Section 4 of this paper to illustrate the application of topological constraints to
deriving the governing equation for fragmentation parameters. The present research is a
continuation of the previous work and it is motivated by the following issues.

(1) One of the most important geometric phenomena, the formation of three-ordered
or three-fold vertices, has long been assumed as the direct consequence of physical effects
(e.g. Smith, 1952; Dormor, 1980 ; Glazier et al. 1990). From the geometric point of view,
a typical shortcoming of this assumption is the isolation of vertex order from the distribution
ratios of different polygons. Sometimes the three-ordered vertices are ascribed to topological
stable structures, or it is assumed that the topological properties are unchanged by small
deformations (Weaire and Rivier, 1984 ; Atkinson, 1988). However, a topological property
should not be related to small deformations, since it is independent of the size and shape
of a geometric object. Even though physical mechanisms behind the growth of a network
might be consistent, more or less, with certain geometric phenomena, the current theories
seem to restrict a universal topological property within a limited domain.

(2) Exclusion of the negative Euler characteristics in classical models has over-
simplified the diversity of natural and artificial structures. The conventional representation
of a flat network is based on the map of a sphere coordinated by a projective plane (see
Blackett, 1967), and, therefore, its Euler characteristic is 2. This type of model is valid only
for a simply connected plane. In this circumstance, any inhomogeneous defects which may
appear during the evolution of a network or exist previously cannot be distinguished from
normal cells. In other words, many previous models must indifferently treat all cells of a
network, otherwise the Euler equation no longer holds at all. In association with surface
networks, inhomogeneity is not rare, but is a very common phenomenon. For example, the
manifest inhomogeneous defects caused by numerous large vessels were observed in the
cellular networks of trees (Zimmermann and Brown, 1971, pp. 91-92). In this example, in
sharp contrast with six, the average edge number of cells, the number of edges of a
single vessel neighboring on cells is as high as 42. With regard to the physical effects of
inhomogeneous defects, therefore, introduction of the negative Euler characteristics can be
of practical value.

(3) To a certain degree, previous investigations of topological constraints seem to stay
simply on the direct verification of the Euler equation. Few quantitative results exist
for interactions between vertices and polygons. Consequently, a considerable number of
challenging questions have no clear answers to date. For instance, what types of polygon
play important roles in the formation of low-ordered vertices? Is there any specific relation
between low-edged polygons and many-ordered vertices? Finally, the lack of a clearly
understood mechanism for the distribution of many-edged polygons in a surface network
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Fig. 1. Four leaf-vein networks.
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Fig. 2. The coat pattern of a reticulate giraffe from The Giraffe (Dagg and Foster, 1976), reproduced
with the author’s permission.
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Fig. 4. (a) Three examples of vertices. (b) Illustration for the treatment of an incomplete edge.

has given rise to negative effects in modeling metallurgical grain growth (Glazier et al.,
1990). Therefore, new efforts are needed on other topological constraints of networks to
meet the growing needs.

In order to obtain basic parameters which govern a surface network, the present
research derives three new formulae from the Euler equation, as well as other usual
identities. In addition, the plane representation of a many-holed torus is introduced to
broaden the applicable scope of geometric constraints from homogeneous networks to
inhomogeneous ones.

2. SOME BASIC CONCEPTS

Several topological terms have already entered this presentation, so at this point some
definitions and concepts are here introduced to explain these terms and they will be used
throughout the balance of the paper. For more details, the reader is invited to use the book
by Blackett (1967). The first point to be used is that the topological property of a geometric
object remains unchanged after subjected to a well-defined continuous transformation.
Next, the following definitions are required.

Vertex and its order

A vertex is an intersection point of at least three curves (a straight line is the special
case of a curve). It is marked by a letter. The order of a vertex is the number of the times
that the vertex appears as the end of a curve. Vertices A-C shown in Fig. 4(a) are three-
ordered, four-ordered and five-ordered vertices, respectively.
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Two edged polygons ©

Fig. 5. (a) Examples of planar polygons. (b) Examples of spatial polygons. (¢) Illustration for
treatment of two-edged polygons.

Edge and polygon

An edge is a curve connecting two vertices. Sometimes, an incomplete edge may appear
in a surface network as shown in Fig. 4(b). With no loss of generality, the incomplete edge
will either be extended to intersect with another edge, or it will not be counted as an edge.
In the latter case, intersection point Q will not be treated as a vertex. A polygon is a single
closed ring consisting of at least three edges associated with three vertices. A polygon is
denoted by marks of its vertices. In Fig. 5(a), planar polygon {abc) is a three-edged
polygon, {adeb) and <hijgf) are four-edged and five-edged polygons, respectively. The
non-planar polygon (ABC) shown in Fig. 5(b) is also a three-edged polygon. (ABC) is
said to be topologically equivalent to (AOC), (AOB) or {(BOC) or even {abc) of Fig.
5(a), because all of them have three edges. Very few two-edged polygons such as these
shown in Fig. 5(c) are observed in surface networks. Of interest to us, they will be treated
as an edge, moreover, in order to avoid derivations and discussions which do not serve the
practical applications we have in mind.

Surface and surface network

A surface is the boundary of a finite object. A surface network is constructed by a
group of polygons on a portion of the surface or on its entirety. Two surfaces or two surface
networks will not be distinguished from each other unless the Euler characteristics of the
two surfaces are different (the meaning of a Euler characteristic is explained below). For
instance, two surface networks shown in Fig. 6(a,b) are considered to be equivalent because
pattern (b) is generated from pattern (a) by using the mapping z = |cos (x*+ y?)"?| under
the Cartesian coordinates (x, y, z). Visibly, there is no difference about vertices and polygons
between the two grid networks.

The Euler characteristic
The Euler characteristic, denoted by yg, is evaluated by the expression xp = 2—2Ng
where Ng is a positive integer and it is called the number of holes of a rorus. The Euler
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Fig. 6. Two equivalent surface networks. (a) A flat pattern. (b) A deformed pattern.

characteristic g displays its significance when it is related to the subdivision of a torus into
a polyhedron by the equation

Noe—N{+N, = %z, ¢y

where N, is the number of vertices on the torus, N, the number of edges and N, the number
of polygons. The relation yg = 2 represents a zero-holed torus, or sphere, g = 0 a one-
holed torus, or doughnut, xz = —2 a two-holed torus, and yz = 2—2Ng an Ng-holed torus.
The tori shown in Fig. 7 (a—d) correspond to g = 2, 0, —2 and —4, respectively.
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Fig. 7. The tori with the different Euler characteristics. (a) A sphere. (b) A doughnut. (c) A two-
holed torus. (d) A three-holed torus.

In the present research, a simply connected plane is represented by the map of a one-
holed torus instead of a sphere. In contrast with the map of a sphere on a projective plane
showing only a half-sphere, this representation exhibits the whole view of a one-holed torus.
Additionally, on the Euclidean plane, the torus map is a square or a quadrilateral instead
of a circular map of a sphere and, therefore, it should be more convenient for treatments
of experimental data. Meanwhile, the plane map for a many-holed torus is a consistent
extension of the map of a one-holed torus.

The torus map of a one-holed torus
The map of a one-holed torus is made by plotting latitude 8 and longitude ¢ of the
torus shown in Fig. 8(a) as rectangular coordinates in a plane shown in Fig. 8(b). Because

T 3n
— <7, —S<P< S, 2
n<f<m —o<d< 2

the map is a rectangular area which includes the top and right edges but not the bottom
and left edges. A heavy line in Fig. 8(b) denotes an edge included in the map, whereas a
light line indicates an edge not included. The solid dot represents a vertex included ; a small
circle stands for one not included. Each point on the torus has a unique image on the map.
The torus map in Fig. 9 illustrates the subdivision of a simply connected plane into 17
triangles, two pentagons and five hexagons with only four-ordered and six-ordered vertices.
The number given within a polygon refers to the number of its edges. It is easily seen that
N, - 21. N, = 45 and N- = 24, and these numbers satisfy the Euler equation yg = 0.
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Fig. 8. (a) Illustration of constructing a torus map from a one-holed torus. (b) A torus map
representing a simply connected plane.

The torus map of a two-holed torus

A torus map for a two-holed torus must now be introduced in some detail to meet the
need of analysis of inhomogeneity. The torus map of a many-holed torus can be built by a
similar process. As shown in Fig. 10(a), we first divide a two-holed torus into two one-
holed tori by cutting the common tube shared by two annular surfaces. As a result, each
one-holed torus contains a shadow defect resulted from the cut shown in Fig. 10(b). Second,
a suitable latitude angle and longitude angle are introduced as before for either one of the
two one-holed tori, and then a plane square with a shadow defect is plotted as shown in
Fig. 11(a). The shadow defect on the map is defined as an inhomogeneous cell and it will
not be counted as a normal cell in the follow-up subdivision of the map. One should bear
in mind that the segments of boundary of an inhomogeneous cell are shared by polygons
as their edges. The above cutting operation leads to two one-holed tori and hence two
identical maps with the cells. Analysis of the subdivision of a plane needs only one, so the
other one is simply treated as an identical image. Consequently, the Euler equation (1) for
the subdivision of a multily-connected plane has the form

NO—N1+N2=X2E=1~NE, Ne > 1. 3)

The proof of eqn (3) is not difficult, and is omitted here. When Ny = 2, eqn (3) corresponds
to the map of owning one inhomogeneous cell ; and when Ng = 3, it holds for the map of
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Fig. 9. An example for the subdivision of a simply connected plane.

The cutting plane

(a)
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Fig. 10. Illustration of constructing a torus map with an inhomogeneous cell. (a) The cutting
procedure. (b) Two one-holed tori with inhomogeneous cells.
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Fig. 11. An example for the subdivision of a multiply connected plane.

two inhomogeneous cells and so on. In the analogy of this, the number ® of inhomogeneous
cells on a map is determined by

©=Ng—1, Ng>1 4)

It is worth pointing out that the above cutting operation is not unique. Alternative
operations may be found, but the current one appears to be most convenient for appli-
cations. An example for the subdivision of a square with an inhomogeneous cell is given in
Fig. 11(b), containing 21 four-edged and four five-edged polygons. The numbers N, = 29,
N, = 55 and N, = 25 satisfy the Euler equation (3) of yg = —2 0or ® = 1.

It should be noted that the size and shape of a polygon are heavily influenced by
physical and/or biological parameters, especially for non-skeletal networks. For instance,
the size and shape of a fragment depends on strain rate and energy balance (e.g. Lankford
and Blanchard, 1991 ; Yong er al., 1994) ; the average area of an »n-sided metallurgical grain
is controlled by free energy (e.g. Atkinson, 1988 ; Frost et al., 1990) or temperature changes
(Alles et al., 1993); and the size of rat-liver cells is sensitive to chemical stain (Paiement,
Dominguez and Messier, 1992). In addition, such examinations have also shown that the
edge number of a polygon depends on its size and shape. Thus, it is reasonable to assume
that physical and/or biological factors can only make contributions, if any, to the formation
of three-edged and/or four-edged polygons. It will be proved that after the number of the
two types of polygon is known, three fundamental equations derived next give a quantitative
description to the other important parameters of a surface network.
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3. FORMULATION

As discussed above, the torus map of a one-holed torus related to yg = 0 can be used
to represent a simply connected plane. Thus it is feasible by means of eqn (4) to write eqns
(1) and (3) in the unified form

Ny—N,+N, = -0, ®)
®=Ng—1, Ng=1, 6

for the subdivision of either simply connected or multiply connected surfaces. The main
difference between eqns (1) and (5) is that eqn (5) is suitable for a generalized plane with
inhomogeneous defects instead of a closed surface.

A dynamic process may change the values of Ny, N, and N, at an instant. However,
the time-dependent rearrangements have no influence on the form of the Euler equation
because it is a geometric equation. This feature of eqn (5) ensures that formulae derived
from it are adaptable for dynamic models. The reason for this time-invariant property is
that the increments of N, N, and N, are always in a self-equilibrium state. Here is the proof
for this statement. After the time increment Az, N(i = 0, 1, 2) and © are altered to N¥and
®* where

dn, de
Nf=Ny+ ‘At (1=0,1,2) and ©* =@+ A 7)

dN,/dt and d®/ds are the increasing rates of N, and O, respectively. In the light of
Nf—NT+N%¥= —0* and eqns (5) and (7), one obtains

dN, dN, dN,  de

& A T T T ar ®)
Equation (8) can also be achieved by directly differentiating eqn (5) with respect to r. But
the kinematic meaning of the Euler equation could be covered by such a procedure.

Without loss of generality, suppose that the subdivision of a plane into a network
consists of n types of polygon with edgesk, < k, < ... <k, < ... <k, and m types of vertex
with orders j, <j, < ....<j; <...<j,. Meanwhile, the total number of polygons with
edge k; is denoted by K; and the total number of vertices with order j; is denoted by J;. Since
one edge connects two vertices and two polygons share one common edge, an ordinary
geometric analysis leads to the following identities

2N1 = Zji‘][s (9)
i=1
n 2]
2N1 = Z kiKi+ z H, (10)
i=1 i=1
N() = Z Jb (11)
i=1
N, =Y K, (12)

i=1

where H, is the edge number of the jth inhomogeneous cell.

For a general subdivision, there is no reason to exclude any type of polygon and any
type of vertex unless an abnormal situation is specified. Therefore, it is natural to introduce
the following iterative equations
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ji+1 =1+]1=l+.]] (i=1727"-’m_1)’ (13)

kigs=1l4+k=i+k, ((=12,....,n—1). (14)

It is very important to notice that neither eqn (13) nor (14) is a geometric constraint of the
subdivision. Actually, if a network does not have a type of vertex and/or a type of polygon,
for example, j; and/or k, where s and r are integers and 1 < s < m, 1 <t < n, one can take

J; = 0 and/or K, = 0 for eliminating j; and/or %,.
Substitution of eqn (13) into eqn (9) yields

2N, =, Z Ji+ Z i1 =i No+ Z iJivr (15)

i=1

Similarly, inserting eqn (14) into eqn (10) results in

2N, =k, ZK+Z:K,H+ZH kN2+ZzK,+1+ZH-. (16)

i=1 i=1 i=1 i=1

Adding eqn (15) to eqn (16) gives

m—1

4N, —k N, —j N, = Z Jip1 + Z Ko + Z H; 17

i=1 i=1

and then

m—1

4N, =N, —No)+ @ —k\)N,+(4—j))N, = Z i+ Z K+ Z H,. (18)

i=1 i=1

According to the Euler equation (5), eqn (18) becomes

@—k)N,+(4—j)N, = —40 + Z iJi+ Z iKip + Z H,. (19)

i=1
Equation (19) is one of the three fundamental formulae for analysis of topological con-

straints on surface networks. The other two are derived below.
Subtracting eqn (15) from eqn (16) produces

]1N0+Zl.],+l—kN2+ZlK,+1+ZH (20)

i=1 i=1

Equation (20) is rearranged into two forms

Ji(No— N1+N2)+ZIJ1+1—k Ny +ji (N, — N1)+ZIK+1+ZH' (21)

i=1 i=1 i=1

and

I No+k (No—N))+ Z iJiyy =k (N;—N+Ny)+ Z K + Z H;. (22)

i=1

In terms of the Euler equation (5), eqns (21,22) are simplified to
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m—1 n—1 o
Z i1 = 1O +k Ny +ji (N, — Ny + Z K+ ) H, (23)
i=1 i=1 Q=1
and
n—1 m—1 ®
Z Ko =kiO@+j,No+k(No—Ny)+ Z iJiy1— 2, H,. (24)
i=1 i=1 i=1
Because of
kl 1= . 1 e
N,—N, = 1—7 Nz_i,-; lKi+1—2i§] H,; (25)
and
J 1t
NO_N1= 1“‘5 N()_EZIJH—D (26)
i=1

eqns (23, 24) are converted to

m—

1 - N N
i = 1O+ i +ky -7 N, + -4 iK1+ -2 H;  (27)
2 2 2/

i=1 i=1 i=1

and

n—1 k k m—1 Q
Y K, =kl®+[k, +j1<l—?l>:|No+<1—?l> S idi— Y H. (28)
i=1

i=1 i=1

Equations (27, 28) are the other two fundamental formulae. One may find other alternative
equations through different approaches, but they are likely to be the linear combination of
eqns (19) and (27, 28).

An important application of eqns (19) and (27-28) is that they reveal the symmetry
between vertices and polygons of a general surface network. From the geometric point of
view alone, it is unnecessary to distinguish the difference caused by physical inhomogeneity.
As a result, © is taken as zero and H(1 < i < ®) disappears from eqns (19) and (27, 28).
In addition, a general surface network should possess both three-ordered vertices and three-
edged polygons. After substitution of j, = 3 and k, = 3 into eqn (19), by using identities
(9-12) and the Euler equation of ® = 0, one obtains

m—4 n—1
3J|+2J2+J3 = z l-],+4+2 Z iKH—I (29)
i=1 i=1
and
n—a m~1
3K +2K, +Ky = Y iKi o +2 Y iJiy1, (30)

i=1 i=1

respectively. Meanwhile, further analysis to eqns (29, 30) gives

m—5 n—1
A1, 430+ 205+ d, = No+ 3 idiys+2 Y iKiy (31)

i=1 i=1

and



Surface networks in nature and science 189

n—3

4K, + 3K, 42K, + Ky = Ny + Y

m—1
iKis+2 %, i, (32)
i=1 i=1
In a similar fashion, eqns (29, 30) or (31, 32) can also be derived from eqns (27, 28).
Equations (29, 30) and (31, 32) demonstrate that there is the symmetry between J; and K..
That is, after an orderly reciprocal exchange between vertices and polygons, the geometric
constraints of a surface network remain unchanged. Mathematically speaking, if a pair of
point sets (J;K), where J = {J,,J,,...,J,} and K = {K,K,,..., K,} satisfies constraints
(29, 30), then the other pair of point sets (K;J) given by

K;J) = (J;K), (33)

also satisfies eqns (29, 30) and it is symmetric to (J; K).

Before discussions of specific cases, three simple examples for ® = 0 are given to
illustrate how constraints are imposed on a surface network by eqns (19) and (27, 28)
through the minimum-ordered vertices and the minimum-edged polygons.

(a) k, = 6, j, = 3. Either eqn (27) or (28) yields

m—1 n—1
2 Z i1 =— Z iK1
i=1 i

i=1
Obviously, the only choice for both J,, , and K, is
Ja=0, I<i<sm-1; K, =0, 1<ig<n—1L

It follows that on a network, if the edge number of a minimum-edged polygon is six and
the order number of a minimum-ordered vertex is three, then the network is not allowed
to have any other types of polygon and vertex due to geometric restrictions.

(b) ky =4, j, = 4. Eqn (19) provides

m—

1 n—1
Y il + Y Ky =0,
i=1

i=1
leading to
Jo1=0, I<i<m—1; K, =0, 1<i<n—1
A conclusion similar to (a) can be drawn. On a surface network, if the minimum-edged
polygon has four edges and the minimum-ordered vertex has order four, then the network
is not allowed to have any other types of polygon and vertex.

(c) k, = 3, j, = 6. Either eqn (27) or (28) gives

m—1

n—1
Z g1 = —2.2 Ky

i=1 i=1

and thus
Ja=0, I<ism-1; K, =0, 1<i<n-—1.

Obviously, on a network, if the minimum-edged polygon has three edges and the minimum-
ordered vertex has order six, then the network is not allowed to have any other types of
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polygon and vertex. The results for examples (a—) are three well-known regular sub-
divisions of a simply connected plane. Any other subdivisions are called irregular subdiv-
isions. They show that a surface network can be controlled completely by the minimum-
edged polygons and the minimum-ordered vertices. In the next section, it will be verified
that the minimum order of vertices is not an independent parameter, but controlled by the
minimum edge of polygons, and vice versa.

From the point of symmetry, example (b) is a self-symmetric network ; examples (a)
and (c) are symmetric with each other. In fact, (c) can be derived from (a) by use of relation
(33)

(J5K) = ({Ka} 5 {11)) = K3.9) = ({1} {K. D). (34)

To simulate the failure of thin elastic films, Meakin (1988) designed a plane uniform
skeletal network with triangular elastic bonds and six-ordered nodes which is math-
ematically coincident with example (¢). Surprisingly, the final crack patterns obtained by
Meakin (1988) are very close to the structure of example (a). It implies, in a topological
sense, that to some extent a macroscopic crack pattern is the symmetric structure of a
microscopic material arrangement as described by eqn (34).

4. APPLICATIONS

To have a better understanding of the analytical procedure adopted above, attention
now focuses on the subdivision of a simply connected plane. Mathematically, this cor-
responds to ® = (. Physically, the results obtained are applicable for a homogeneous
network. The effects of inhomogeneous defects will be analyzed in the second part of this
research. Because the different minimum edges of polygons have distinct consequences,
detailed discussions into each case are given individually.

ik >4
Equation (19) for k, > 4 is rewritten as

m—1 n—1
(4—f1)N0 = (kl _4)N2+ Z iJiv1 + Z iKH—l' (35)
i=1 i=1
Clearly, the only meaningful value of j; for eqn (35) is three. Therefore eqn (35) becomes
m—1 n—1
Ny = (k, =8N, + Z i+ Z K, (36)
i=1 i=1

After substitution of j, = 3 into eqn (27), one gains

mol k 17t
Z i = (3_31)]\72_5 Z K, (37)
i=1

i=1

It is obvious from eqn (37) that there exist no meaningful results for &, > 7. In addition,
the case of k; = 6 is the repetition of a regular subdivision which has been discussed in
example (a) of Section 3. By the way, an exception discussed by Klamkin and Liu (1980)
and Fulton (1992) for tessellations is not applicable here, since a very irregular pattern
boundary is required. As a result, the only meaningful choice of k; > 4 is k, = 5. Inserting
k, = 5 into eqn (37) results in

n—2

m—1
K, = Z iKi,+2 Z iJi+]' (38)

i=1 i=1

Note that K| is independent of K, and J,. Equation (38) shows that five-edged polygons
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are convertible with polygons with more than six edges and vertices with order greater than
three. If K is given, then the upper limits of others are determined, for instance, K, » < K,/i
and J,, | < K,/2i. Clearly, the greater the edge number of a polygon, the less the number of
this type of polygon. The same conclusion holds for vertices. Furthermore, in a kinematic
sense, the increasing rate of X is of the form

_ Z th+2 Z 1+1 (39)
i=1 i=1
in particular, giving
dK,-+2 1 dKl dJ,‘+l 1 dK]
— g . 40
a Sia ™ Ty Sua (40)

Inequality (40) means that the maximum increasing rate of (i+6)-edged polygons is less
than one-ith of the increasing rate of five-edged polygons. For (i+ 3)-ordered vertices, the
maximum increasing rate reduces to one-2ith.

By making use of identity (11), &, = 5 and j; = 3, eqn (28) yields

2 2n=
Jy 3No+ Z 1J1+2+ Z Kyt 41)
l—-l

The geometric meaning of eqn (41) is that if five-edged polygons act as the minimum-edged
polygons in a surface network, then the number of three-ordered vertices is automatically
larger than two-thirds of the total number of vertices in this network. No more conditions
need be imposed to this conclusion. In this case, physical mechanisms, if any, do not make
any significant contributions to the formation of three-ordered vertices, but prevent the
appearance of four-edged and/or three-edged polygons from the surface network. In terms
of eqns (11) and (41), this statement is also verified from another aspect by

m—1 n—1

1
Zl i =§No"'§_21 K. (42)

That is, the sum of all other types of vertex is much less than one-third of total vertices.

According to eqn (13), the maximum order j,, where j,, = j,+m— 1 can be determined
when integer m is known. Thus, the first step is to evaluate m. Assume that none of J,
(I1<i<m—1)and K, ;5 (1 <i<n-3)isequal to zero, and then an inequality for m is
derived from eqn (38) in the form

1

m@m—1) < A [K: — K3 — 311 —3) Kninr_ 3] (43)
min(m— 1)
and it yields
Jm <Jh=h K —Ks+5—3 (44)
due to

1
ms< \/J_h— (K, —K3—%”(”"“3)Kmm(n—3)]+%+%

in(m—1)

SVK —Ks—in(n—=3)+1+1 < /K —K;+1+1,

SAS 32-2-D
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where m > 2 and n > 4. Here j% is an upper limit of j,,, Kpinn—3 = 1 is the minimum value
of the set {K,, K, ..., K,} and Jyiom_1, = 1 is the minimum value of the set {/,, /s, ..., /).
Similarly, the estimation for the maximum edge k,, where k, = k,+n—1 is also available
from eqn (14) if n is given. Based on eqn (38), an inequality for &, is given by

k, < ki =k +2K —K)+7+73, (45)

since

2
ns\/K—-—[K]—‘K3—m(m—l)Jmin(n—|)]+%+%
min(n— 3)

S V2K —Ky)—m(m—1)+2+2 < /2K, —K:)+ 243,

with m > 2 and n > 4. Here & is an upper limit of k,. Note that one of the two maximum
parameters, ju, and kj, increases with the decrease of the other one.

Owing to smaller upper limit j, the generation of high-ordered vertices is more difficult
than the generation of high-edged polygons. This is possibly a main reason for the frequent
appearance of high-edged polygons and the absence of high-ordered vertices in natural and
random artificial surface networks. More accurate estimation for both j% and k% can be
conducted by adding more terms into eqns (44) and (45). By the way, J,,; #0
(I<ig<m—1)and K;.; #0 (1 <i<n-3) are dispensable conditions. They are intro-
duced simply for the convenience of derivations and can be removed if necessary.

During the collection of experimental data for verification of theoretical models, one
could encounter great difficulties caused by constructing an exact torus map. This kind of
difficulty is also unavoidable for classical models (Smith, 1952). To alleviate this situation,
an alternative method is suggested here. Application of eqn (12) to eqn (38) yields

4K, +3K,+2K,+ K, = 3N, +AR (46)

where

n—-S m~—1
AR=Y K s+2 Y iJi:.

i=1 i=1

To be close to an exact torus map as accurately as possible, the polygons given within a
square or a quadrilateral area are counted, and, most importantly, the numbers of both
polygons and vertices on one side of boundaries should be close or, if possible, equal to
these on its opposite side. In such circumstances, the only error source of experimental data
is the mismatched parts of boundary polygons and vertices, and it is independent of size of
pattern. If AR is negligibly small or equal to zero, then eqn (46) yields a brief expression of
N,

N4 = (4K, +3K, + 2K, +K,), 47)

where N4 denotes the experimental value of N, with the potential error. Note that N4 relies
only on low-edged polygons, and hence the collecting process of experimental data becomes
very convenient. Sometimes, the accuracy of N4 can be improved by adding more terms,
including J, ;, to eqn (47) if AR is not negligible.

Because three inequalities J; > 2/3N,, k, < k% andj,, < j% are so obvious in the surface
networks collected, their experimental verifications are not listed here. In this paper, all the
experimental data but one for bubbles (Aboav, 1980) are obtained by the author through
observations on a variety of surface networks.
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(1) A coat pattern of a giraffe (Dagg and Forster, 1976; see Fig. 2 of this paper). A
four-edged polygon in the middle of its neck is not counted.

K, =12, K,=11, K;=4, Ks=1, otherpolygons=90;
N, =128, N4=230, AN, =7.1%,

where AN, denotes the percentage error of N,.
(2) A bubble pattern (Aboav, 1980, p. 47, table 1).

K, =580, K,=23511, K, =516, K, =5, others=0;
N, =4612, N%=4630 AN, =0.39%.
(3) A biological cellular network (Schejter and Wieschaus, 1993, p. 374, fig. 1j).
K, =4, K, =16, others=0;
N, =20, N{=21, AN, =5.0%.

(4) A borosilicate grain pattern (Selleck ez al., 1990, p. 83, fig. D). A four-edged grain
at the upper right corner is not counted.

Ki=10, K,=7, K;=1, K,=1, K;=1, others=0;
N, =20, Ni=21, AN, =5.0%.

() k;, =4
Equation (19) for k, = 4 and ® = 0 is of the form

m—1

n—1
(4—j)No = Y iJip 1+ Y iKiy . (48)
Py

i=1

Obviously, eqn (48) holds only for j, = 3 orj; = 4. The case of j; = 4 has been discussed in
example (b) of Section 3. Thus, the only meaningful value of j, is j, = 3. In terms of identity
(11), eqn (48) is written as

m—2

n—1
Jl = Z iJi+2+lZ iKi+l- (49)

i=1 i=1

Equation (49) shows that three-ordered vertices are much more than the sum of all other
types of vertex except for four-ordered vertices.
Substitution of £, = 4 and j, = 3 into eqn (27) of ® = 0 obtains

ln—l m—1
N2=§ZiKi+l+z iJigr- (50)
i=1 ;

i=1

By means of identity (12), eqn (50) is converted to
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n—3 m—1
2K, +K; = Z iKips+2 Z iy (51)
1 i=1

i=

Again, eqn (51) indicates that many-edged polygons and many-ordered vertices are con-
vertible only with low-edged polygons, namely, four-edged and five-edged polygons. Based
on eqns (49) and (51), another expression for J; is determined by

2 m-—2 2 n—2
Jy =§N0+ Z iJi+2+§<Z iKi+2_Kl>- (52)
i=1 i=1
Evidently, if
n—2
Y iKiy2 > K, (53)

i=1

then J; = 2N,/3. Note that condition (53) is independent of K,, the number of five-edged
polygons. In a similar fashion, the formula for J,, , is found by use of eqns (49) and (51)
in the form

m—1 1 2 n—2
Z it =§No—§(z iKi+2“K1>- (54)
i=1 i=1

According to eqn (54), provided that eqn (53) does not hold, other types of vertex such as
four-ordered vertices have potential to be more than one-third of the total vertices or even
larger than that. Moreover, eqn (54) suggests that the traditional assumption about J, ., = 0
(i = 1) is a very special case since it requires

n—2
N0=J] =2(ZiKi+2—K1)' (55)

i=1

The appearance of four-edged polygons in eqn (52) provides an opportunity to physical
parameters to make influences on inequality J, > 2/(3N,). However, their functions can be
still limited to a small scope. When the number of any type of polygon with six or more
edges is larger than a small fraction of four-edged polygons, for instance, K, , = K,/i(i > 1),
inequality J, > 2/(3N,) retains. Meanwhile, if K, > K|, that is, the number of five-edged
polygons is greater than the number of four-edged polygons, while the distribution of other
polygons are arbitrary, an estimation for J, is given from eqns (51) and (52) by

n—2

Y K> (56)

2 va. 411\3 ) 6
Jl?—No+Zl‘]i+2+g 1K1+3+§
=1 i< i=1

5

Still, in this case, more than 40% of the total number of vertices are three-ordered vertices.

When an opposite case K; > K, (i = 1) against K; > K, occurs, is there any possibility
of having J, > 2/(3N,)? If the answer is positive, what is the critical value of a K(i > 1)? The
critical values of Ki(i = 1, 2,...,n) are very important because once they are determined,
researchers are capable of controlling the number of three-ordered vertices by adjusting the
ratio of different polygons with respect to the total number of polygons. Let

n—2
Z iKi+2_K1 = 05 (57)

i=1

then eqn (52) yields
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m—2
Jy=3No+ Y idips. (58)

i=1
Equation (57) is equivalent to the equation

K§ = %Nz (59

n—3
Y iK.,;—K, =0, (60)

i=1

where K5 denotes the critical value of K,. Hereinafter K (i =1,2,...,n) are used to
represent the critical values of K. By repeating the same operation on eqn (60), one obtains

Ks=2"'N, (i=1,2,...,n-3), (61)
-2 = K, (62)
2Kf,_2 ‘+‘Kf,_| == Kﬁ_:; = 2_(nw3)N2. (63)

The arrangement of polygons

K = {K,,K5,..., K5 2, Ki_1, K5} (64)
1 1 N.
= {ZNZ,ZNZ,...,;_%, zAz,Kz_l,Kﬁ}

is called the critical distribution of polygons for the maintenance of J, > 2/(3N;). When
K, > N,/2, other reactions like K§ < N,/4 or K§ < N,/8 could lead to J; < 2/(3Ny).
In terms of eqn (51), upper limits &k, and j}, are determined by

K < ki =k, +/2QK, + K, —K,)+3+2 (65)

and

o <Jh=J 2K+ Ky — Ko+ — 1 (66)

with m > 2 and »n = 5. It follows from egns (65) and (66) that four-edged and five-edged
polygons are major factors to monitor upper limits k) and j;,. Nevertheless, since X, has a
larger weighting coefficient than X, does, four-edged polygons should more probably cause
higher-edged polygons or higher-ordered vertices.

After the small parameters of eqn (51), compared with 5K, +4K,+3K;+2K,, are
neglected, experimental value N3 of N, is of the form

N% =3(5K, +4K, + 3K, +2K,). (67)

The experimental verification for eqn (67) is listed below.
(1) A crack pattern (Meakin, 1988, p. 173, fig. 1d).



196 Z.Yong

J
6 (R @ — Vertex-control
@ — Polygon-control

5 |
@ = Self-symmetry

4 _]

3 ]

Fig. 12. A representation of symmetry of surface networks.

K =2 K,=8, K;y=26, K, =4, K;=1, others=0;
N, =41, N4 =43, AN, =45%.
(2) A crack pattern shown in Fig. 3.
K =5 K,=12, K;=10, K, =4, K;=23, others=0;
N, =34, N4 =37, AN, =8.8%.
(3) A cellular network (Boitano, Dirksen and Sanderson, 1992, p. 294, fig. 2A).
K =3 K,=10, K;=20, K, =8, others=0;
N, =41, N =44, AN, =7.3%.

One reason for the high accuracy of N4 is that three-ordered vertices are the dominant
majority in most surface networks. If J,, (i 2 1) or other terms of polygons truncated from
eqn (67) are not negligible, their effects should be included.

(i) k; =3

In cases of k; > 4, i.e. the edge number of a minimum-edged polygon is more than or
equal to four, regardless of two regular subdivisions, there is no choice for the value of the
minimum-ordered vertex j, other than j, = 3. This kind of geometric constraint is here
defined as polygon-control. According to symmetric property (33), the only choice of &, is
k, = 3 if j, > 4. In this circumstance, the polygon-control is transmitted to vertex-control.
All the formulae for j, > 4 can be obtained directly from formulae for &k, > 4 by exchanging
Jii=12,...,mwith K, (i=1,2,...,n). The vertex-control will not be analyzed because
of their rare appearance in non-skeletal surface networks. It should be noted thatk; = j, = 3
is neither the case of polygon-control nor vertex-control. Indeed, it is a more complex self-
symmetric structure in comparison with j; = k, = 4. A pictorial illustration is given in Fig.
12 for the symmetry of surface networks.

After subtraction of eqn (30) from eqn (31), further analysis leads to
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2 m—2 2 [n=3
Ji :§No+ Z iJi+2+§(z l'K,-+3—2K1—K2)- (68)

i=1 i=1

The formula for J; (i > 1) is determined by

m—1 1 2 n—3
z iJic =§No_§<z iKi+3—2K1“‘K2>~ (69)
i=1 i=1

Itis apparent from eqn (68) that the theoretical basis of conventional models is the following
identity

n—3
No=J, =2 ( Y K., —2K, —K2) (70)

i=1

in connection to J;,; =0 (i=1, 2,...,m—1). Note that condition (70) is independent of
five-edged polygons.

In terms of eqn (68), the ratio of the number of three-ordered vertices to the total
number of vertices is more seriously affected due to the appearance of three-edged polygons.
However, the dominant occupation of three-edged vertices among all the vertices can still
retain if

n—3
Y iKi.; > 2K, +K; (71

i=1

where five-edged polygons are not contained, and hence Kj is arbitrary. When K, > 3K, + K,
and the distribution of other polygons is arbitrary, analysis into egns (32) and (68) results
in

bk.. (72)

) m—2 on-4
Jy 2 No+ Y iJz‘+2+§ Y Qi+3)Ki .+ 5
=1 =1

5

This means that in this case J; = 2/(5N,). More deliberate examinations on eqns (32) and
(68) lead to

24—4
J = 31— 4No+ Z iva+ 55— 3} 4% Z [G+DA—1]Kiss (73)
if
K;+ K, = QA—3)K, +(A—2)K,, (74)

where A4 > 2. The synthetic influence of any two or more types of polygon on three-ordered
vertices can be analyzed in a similar way.
By virtue of

n—3
Z iKi+3 '—2K1 _K2 = 0, (75)

i=1

certain calculations obtain the critical distribution K° of polygons for J, = 2/(3N,),
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c c c © c © c
K = {Kla 29 s gy Hpy_3, n—27Kn~l’Kn}

_ {%%i:zmoi_imoi:m} (76)
where
=K, =0, 7)
2"—5
Kia=Ki= K= (78)

According to the author’s observations, there exist significant differences between many
natural networks and the critical distribution. This may be of interest for applications
because these differences can accommodate great variations of geometric structure of a
material without loss of dominant occupation of three-ordered vertices. More importantly,
this kind of geometric change could hopefully result in improvements of physical or
biological behaviors of the material. From this point of view, eqn (76) provides a quan-
titative basis for the description of granular and biological materials.
Other formulas for case j; = k; = 3 are determined by

o <Jh =1 /3K 2K, + Ky —Ks—2J, 4+ 2 — 1, (79)

Ky < ki =k + /20K, +2K, + Ky — Ks—2J,) + 3+ 2, (80)
with m > 3and n > 6, and
N% = X(6K, + 5K, +4K; + 3K, +2Ks —2J5). Gy

In the first time, the number J, of four-ordered vertices is taken into account for j*, k; and
N?% because in many cases it is not negligible for satisfactory accuracy. Some comparisons
between N, and N4 are given below.

(1) A leaf-vein network shown in Fig. 3d. Only a part of the network is counted.

K =5 K,=34, K;=22, K,=23,
K;=2, K¢=0, K,=1; J,=238;
N, =87, N4 =95 AN, =92%.
(2) A ceramic grain array (Tuttle ez al., 1993, p. 1540, fig. 3A).
K, =3, K,=13, K; =17, K,=18,
Ki=14, K¢=1; J,=10;
N, =66, N3 =71, AN, =7.6%.

(3) A biological cellular pattern (Boudier et al., 1993, p. 25, fig. 2a). Only a part of the
network is counted.
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K =1, K,=4, K;,=14,
K, =7 K;=2; J,=10;
N, =28, N5 =230, AN, =7.1%.
(4) A bubble arrangement (Aboav, 1980, p. 49, table 6).
K, =20, K,=65 K,=170, K, =153,
K, =87, K¢=45 K;=19, K;=10,
Ki=6, Ko=6, K, =2, Kis=1;
J,=0 N,=1584, N%=1586, AN, =0.3%.

N£ is consistent with other four groups of experimental data given by Aboav (1980), where
the maximum error is 2.1%. Other formulae, like eqns (68) and (79), are also in agreement
with experimental results, but they are not given for the sake of brevity.

One more example is now given for illustrating how to apply topological constraints
of surface networks to the analysis of a fragmentation problem. Assume that all the vertices
of a crack network are three-ordered, and then eqn (15) gives 2N, = 3N,. In this case, the
Euler equation reduces to

Ny = —@+1N, (82

where @ denotes the number of defects of a solid material, such as cavities. In the analysis,
the average area and length of fragments are expressed by 4, and /,, respectively. Based on
eqn (82), applications of energy balance and geometric restrictions lead to the governing
equation

4, 1 AE
4 1 aE 83
PR A PR ST -

for a; and /,. In eqn (83), 4;(K}) and 4,(K) are the weighting coefficients, A4, is the total area
of the fragmentation, 7y, is the average density of surface energy and AE is the internal
energy consumed by surface energy. For an adiabatic process, AE has the form

AE = f dt J tr(TD) dA, (84)

0

where T is the stress tensor and D the stretching tensor. The relation between T and D
depends on the constitute model of the material (Bowen, 1989). A detailed discussion into
eqn (83) has been conducted by Yong (1994b).

5. DISCUSSION

Surface networks are an important part of either natural phenomena or scientific
research. It is an interesting topic to reveal the underlying mechanisms of evolution and
formation of a surface network. As a common phenomenon involved in analysis of geo-
metric constraints, the formation of three-ordered vertices has long been contributed to
direct effects of physical and/or biological parameters, such as the surface tension, despite
the lack of sufficient experimental and theoretical proof. Although bubble arrangements
and some other patterns, such as metallurgical grain arrays, are alike in vertex structures,
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they differ remarkably in the formation process. Moreover, three-ordered vertices are also
in the majority in many surface networks which show no existence of surface tension at all.
A recent result obtained by Tuttle et a/. (1993) demonstrate that there is a considerable
number of four-ordered vertices associated with a fairly high ratio of four-edged grains in
the Pb(Zr, Ti)O; film. Theoretical analysis and experimental verifications in the present
research show that if an evolution process is relatively uniform, three-ordered vertices could
result mainly from geometric constraints instead of a physical and biological consequence,
because only a limited number of three-edged and/or four-edged polygons arise in networks.
In other words, physical and/or biological parameters may play an assistant role under the
domination of geometric constraints. For instance, they might contribute to the ratio of
the number of three-edged and/or four-edged polygons to the total number of polygons.

Mathematically speaking, no matter how complex a surface network appears to be,
there exists a simple symmetric relation between its vertices and polygons. Any variation
of a surface network contains little mathematical surprise, rather than a kind of reciprocal
transformation between vertices and polygons. Some assertions about asymmetric natures
of surface networks (Weaire and Rivier, 1984) may need modifications. To a certain degree,
three regular subdivisions serve as three centers of transmission between the vertex-control
and the polygon-control. For example, when k, = 4, four-edged polygons and four-ordered
vertices have potential to become the dominant majority of a surface network. In such
circumstances, the variations of polygons and vertices take place between two regular
subdivisions (k; ;) = (6;3) and (k,;j,) = (4;4).

Encouraging information obtained in this work for applications is that the geometric
structure of a surface network can be greatly rearranged without loss of the dominant share
of three-ordered vertices in the network. It is expected that the large geometric variations
could bring about significant improvements of physical and/or biological behavior of the
network. At the first step, it seems easy to realize this idea by using computer simulation.

More examinations are needed for deep insight into all the mechanisms of evolution
and formation of a surface network. Three-dimensional geometric constraints and thermo-
dynamic effects are probably two important aspects for future work.
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